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Abstract
The so-called ‘analogue models’ use condensed matter systems (typically
hydrodynamic) to set up an ‘effective metric’ and to model curved-space
quantum field theory in a physical system where all the microscopic degrees
of freedom are well understood. Known analogue models typically lead to
massless minimally coupled scalar fields. We present an extended ‘analogue
spacetime’ programme by investigating a condensed-matter system—in and
beyond the hydrodynamic limit—that is in principle capable of simulating
the massive Klein–Gordon equation in a curved spacetime. Since many
elementary particles have mass, this is an essential step in building realistic
analogue models, and an essential first step towards simulating quantum gravity
phenomenology. Specifically, we consider the class of two-component BECs
subject to laser-induced transitions between the components, and we show that
this model is an example for Lorentz invariance violation due to ultraviolet
physics. Furthermore, our model suggests constraints on quantum gravity
phenomenology in terms of the ‘naturalness problem’ and ‘universality issue’.

PACS numbers: 04.60.−m, 04.62.+v

1. Introduction and motivation

The purpose of quantum gravity phenomenology (QGP) is to analyse the physical
consequences arising from various models of quantum gravity (QG) [1, 2]. One hope for
obtaining an experimental grasp on QG is the generic prediction arising in many (but not
all) models that discrete spacetime at the Planck scale, MPl = 1.2 × 1019 GeV/c2, typically
induces low-energy violations of Lorentz invariance (LI). The breakdown of LI will manifest in
a modification of the dispersion relation. We investigate Lorentz invariance violations (LIV) in
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the boost subgroup, leading to an expansion of the dispersion relation in momentum-dependent
terms

E2 = m2c4 + p2c2 + c4


η1MPlp/c + η2p

2/c2 +
∑
n�3

ηn

(p/c)n

Mn−2
Pl


 , (1)

where both the quantity p/(MPlc) and the coefficients ηn are dimensionless4.
We focus on non-renormalizable effective field theory (EFT) with ultraviolet modifications

in the dispersion relation [3]. There are two aspects of this model theory that are interesting
to look at. The so-called naturalness problem is correlated with the appearance of η1 and
η2 in the dispersion relation (1). If η1 ∼ η2 ∼ O(1), then the low-order corrections do not
appear to be Planck suppressed, and would therefore always be dominant and in disagreement
with observation. In order to avoid this problem, but still keep η�3 ∼ O(1), it is usual to
assume the existence of some extra mass scale µ � MPl so that the first- and second-order
terms are actually powers of the small ratio µ/MPl. Unfortunately, such a scenario is not well
justified within an EFT framework (see e.g. [3]) as renormalization group arguments would
predict a similar suppression in the η�3 coefficients, making them again subdominant. A
possible solution could be provided by having some fundamental symmetry protecting the
lowest order corrections, but so far we do not have conclusive arguments in this regard [1, 3].
A less problematic question is the so-called universality issue, addressing whether the LIV is
particle dependent or not. For a ‘universal’ LIV the coefficients ηn are the same for all types
of particles.

In order to contribute to this debate, we have chosen a rather unconventional path: we
investigate the energy-dependent behaviour of sound waves in a two-component Bose–Einstein
condensate. Building on the existence of so-called ‘analogue models’ (AM) for minimally
coupled massless fields in curved spacetimes [4–10], we show how to extend the AM to include
massive particles [11], and that the dispersion relation (now written in terms of frequency and
wavenumber) is modified by Lorentz violating terms at the analogue Planck scale Meff [12]:

ω2 = ω2
0 + (1 + η2)c

2k2 + η4

(
h̄

Meff

)2

k4 + · · · . (2)

We further calculate the dimensionless coefficients η2 and η4 for both massive and mass-less
quasi-particles and discuss the naturalness problem and universality issues.

2. Sound waves in two-component BECs

The basis for our AM is an ultra-cold dilute atomic gas of N bosons, which exist in two
single-particle states |1〉 and |2〉. For example, we consider two different hyperfine states,
|F = 1,mF = 1〉 and |F = 2,mF = 2〉 of 87Rb [13, 14]. They have different total angular
momenta F and therefore slightly different energies. This permits us, from a theoretical point
of view, to keep m1 �= m2, even if they are approximately equal (to about one part in 1016). At
the assumed ultra-cold temperatures the atoms only interact via low-energy collisions and the
two-body atomic potential can be replaced by a contact potential. This leaves us with three
atom–atom coupling constants, U11, U22 and U12, for the interactions within and between the
two hyperfine states. For our purpose, it is essential to include an additional laser field, which
drives transition between the two single-particle states5. The rotating frame Hamiltonian for

4 The particular inertial frame for these dispersion relations is generally given by the cosmological microwave
background (CMB) frame.
5 A more detailed description on how to set up an external field driving the required transitions can be found in [15].
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our closed two-component system is given by6

Ĥ =
∫

dr

{ ∑
i=1,2

(
−�̂

†
i

h̄2∇2

2mi

�̂i + �̂
†
i Vext,i (r)�̂i

)

+
1

2

∑
i,j=1,2

(
Uij �̂

†
i �̂

†
j �̂i�̂j + λ�̂

†
i (σx)ij �̂j

)}
, (3)

with the transition energy λ = h̄ωRabi containing the effective Rabi frequency between the
two hyperfine states. Here �̂i(r) and �̂

†
i (r) are the usual boson field annihilation and creation

operators for a single-particle state at position r, and σx is the usual Pauli matrix. For
temperatures at or below the critical BEC temperature, almost all atoms occupy the spatial
modes �1(r) and �2(r). The mean-field description for these modes,

ih̄∂t�i =
[
− h̄2

2mi

∇2 + Vi − µi + Uii |�i |2 + Uij |�j |2
]

�i + λ�j , (4)

are a pair of coupled Gross–Pitaevskii equations (GPE): (i, j) → (1, 2) or (i, j) → (2, 1).
In order to use the above two-component BEC as an AM, we have to investigate small

perturbations (sound waves) in the condensate cloud7. The excitation spectrum is obtained by
linearizing around some background densities ρi0 and phases θi0, using

�i = √
ρi0 + ερi1 ei(θi0+εθi1) for i = 1, 2. (5)

A tedious calculation [11, 12] shows that it is convenient to introduce the following 2 × 2
matrices: an effective coupling matrix


̂ = 
 + X̂, (6)

where


 ≡ [
]ij = 1

h̄
Ũij = 1

h̄

(
Uij − (−1)i+j

λ
√

ρ10ρ20

2

1

ρi0ρj0

)
(7)

and

X̂ ≡ [X̂]ij = −h̄

2
δij

Q̂i1

mi

= −h̄

4

δij

miρi0
= −[X]ij∇2. (8)

Without transitions between the two hyperfine states, when λ = 0, 
 only contains the
coupling constants [
]ij → Uij/h̄. While 
 is independent of the energy of the perturbations,
X̂ plays a more significant role in this regard. For low-energy perturbations, in the so-called
hydrodynamic approximation, X̂ can be neglected, X̂ → 0 and 
̂ → 
.

Besides the interaction matrix, we also introduce a transition matrix

� ≡ [�]ij = −2λ
√

ρi0ρj0

h̄
(−1)i+j , (9)

and a mass–density matrix

D ≡ [D]ij = h̄δij

ρi0

mi

. (10)

The final step is to define two column vectors, θ̄ = [θ11, θ21]T and ρ̄ = [ρ11, ρ21]T . We
then obtain two compact equations for the perturbation in the phases and densities

˙̄θ = −
ρ̄ − 	v0 · ∇ θ̄ , (11)

6 In general, it is possible that the collisions drive coupling to other hyperfine states. Strictly speaking the system is
not closed, but it is legitimate to neglect this effect [16].
7 The perturbations have to be small compared to the overall size of the condensate, in order that the system remains
in equilibrium.
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˙̄ρ = −∇ · (D∇ θ̄ + ρ̄ 	v0) − �θ̄, (12)

where the background velocity 	v0 is the same in both condensates. Now combine these two
equations into one:

∂t (

−1 ˙̄θ) = −∂t (


−1	v0 · ∇ θ̄ ) − ∇(	v0

−1 ˙̄θ) + ∇ · [(D − 	v0


−1	v0)∇ θ̄ ] + �θ̄. (13)

In the next section, we show how this equation is analogous to a minimally coupled scalar
field in a curved spacetime.

3. Emergent spacetime in the hydrodynamic limit

Instead of keeping the analysis general [11, 17], we now focus on the special case when 
 is
independent of space and time, and on the hydrodynamic limit where X̂ → 0. Then defining

θ̃ = 
−1/2θ̄ , (14)

equation (13) simplifies to

∂2
t θ̃ = −∂t (I 	v0 · ∇ θ̃ ) − ∇ · (	v0 I ˙̃θ) + ∇ · [(

C2
0 − 	v0 I 	v0

) ∇ θ̃
]

+ 
2θ̃ , (15)

where

C2
0 = 
1/2D
1/2 and 
2 = 
1/2�
1/2. (16)

Both C2
0 and 
2 are symmetric matrices. If [C2

0 ,

2] = 0, which is equivalent to the matrix

equation D
� = �
D, then they have common eigenvectors. Assuming (for the time being)
simultaneous diagonalizability, decomposition onto the eigenstates of the system results in a
pair of independent Klein–Gordon equations

1√−gI/II
∂a

{√−gI/II(gI/II)
ab∂bθ̃I/II

}
+ ω2

I/IIθ̃I/II = 0, (17)

where the ‘acoustic metrics’ are given by

(gI/II)ab =
(

ρI/II

cI/II

)2/(d−1) [−(
c2

I/II − v2
0

) | − 	v0
T

− 	v0 | Id×d

]
, (18)

and where the overall conformal factor depends on the spatial dimension d. The metric
components depend only on the background velocity 	v0, the background densities ρi0 and the
speeds of sound of the two eigenmodes, which are given by

c2
I/II =

tr
[
C2

0

] ±
√

tr
[
C2

0

]2 − 4 det
[
C2

0

]
2

. (19)

Considering the line element obtained from the acoustic metric (18), it is clear that the speed
of sound in the AM takes the role of the speed of light.

It is also possible to calculate the eigenfrequencies of the two phonon modes

ω2
I = 0, ω2

II = tr[
2]. (20)

A zero/non-zero eigenfrequency corresponds to a zero/non-zero mass for the phonon mode.
They both ‘experience’ the same spacetime if

tr
[
C2

0

]2 − 4 det
[
C2

0

] = 0. (21)

The fact that we have an AM representing both massive and massless particles is promising
for QGP if we now extend the analysis to high-energy phonon modes so that X̂ �= 0. For the
following, we concentrate on the flat Minkowski spacetime, by setting 	v0 = 	0.
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4. QGP beyond the hydrodynamic limit

Starting from equation (13) for a uniform condensate, we set the background velocity to zero,
	v0 = 	0, but keep the quantum pressure term, X̂ �= 0. The equation for the rotated phases

θ̃ = 
̂−1/2θ̄ (22)

in momentum space is then [12]

ω2θ̃ = {√

 + Xk2[Dk2 + �]

√

 + Xk2

}
θ̃ = H(k2)θ̃ . (23)

Thus the perturbation spectrum must obey the generalized Fresnel equation:

det{ω2I − H(k2)} = 0. (24)

That is, the dispersion relations for the phonon modes in a two-component BEC are

ω2
I/II = tr[H(k2)] ±

√
tr[H(k2)]2 − 4 det[H(k2)]

2
, (25)

and a Taylor-series expansion around zero momentum gives

ω2
I/II = ω2

I/II

∣∣
k→0

+
dω2

I/II

dk2

∣∣∣∣∣
k→0

k2 +
1

2

d2ω2
I/II

d(k2)2

∣∣∣∣∣
k→0

(k2)2 + O[(k2)3]. (26)

These are two dispersion relations in the desired form of equation (2). Below we will explicitly
compute equation (26) up to the fourth order. The fact that ω2

I/II = ω2
I/II(k

2) only permits even
powers in k; therefore the dispersion relation is invariant under parity. This is by no means a
surprising result because the GPE (4) is also invariant under parity.

We now define the symmetric matrices

C2 = C2
0 + �C2, �C2 = X1/2�X1/2, (27)

Z2 = 2X1/2DX1/2 = h̄2

2
M−2. (28)

Note that all the relevant matrices (equations (16), (27) and (28)) have been carefully
symmetrized, and note the important distinction between C2

0 and C2. Now define

c2 = 1
2 tr[C2], (29)

which approaches the speed of sound c2 → c2
0, in the hydrodynamic limit C2 → C2

0 , (see
equation (19)). The second- and fourth-order coefficients in the dispersion relations (26) (for
a detailed calculation see [12]) are

dω2
I/II

dk2

∣∣∣∣∣
k→0

= c2

[
1 ±

{
2 tr

[

2C2

0

] − tr[
2] tr[C2]

tr[C2] tr[
2]

}]
= c2(1 ± η2), (30)

d2ω2
I/II

d(k2)2

∣∣∣∣∣
k→0

= 1

2

[
tr[Z2] ± tr[Z2] ± 2

tr
[

2C2

0

] − tr[
2] tr
[
C2

0

]
tr[
2]

tr[Y 2]

± tr[C2]2 − 4 det
[
C2

0

]
tr[
2]

∓ tr[C2]2

tr[
2]
η2

2

]
= 2η4(h̄/Meff)

2, (31)

where Meff = √
m1m2 is defined as the analogue Planck mass.
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5. Lorentz violations from UV physics

In order to obtain LIV purely due to ultraviolet physics, we demand perfect special relativity
for X̂ → 0. In other words, we require all terms in equations (30) and (31) which would
otherwise remain in the hydrodynamic limit to be zero. The constraints that we get are

C1: tr
[
C2

0

]2 − 4 det
[
C2

0

] = 0; (32)

C2: 2 tr
[

2C2

0

] − tr[
2] tr
[
C2

0

] = 0. (33)

Beyond the hydrodynamic limit, but imposing C1 and C2, equations (30) and (31) simplify to

dω2
I/II

dk2

∣∣∣∣∣
k→0

= 1

2

[
tr

[
C2

0

]
+ (1 ± 1) tr[�C2]

] = c2
0 +

1 ± 1

2
tr[�C2], (34)

and

d2ω2
I/II

d(k2)2

∣∣∣∣∣
k→0

= tr[Z2] ± tr[Z2]

2
± tr

[
C2

0

] (
−tr[Y 2] +

tr[�C2]

tr[
2]

)
. (35)

To achieve conditions C1 and C2 in the two-component BEC the effective coupling between
the hyperfine states has to vanish, Ũ12 = 0. This can be implemented by imposing a particular
transition rate λ = −2

√
ρ10ρ20U12. In addition to the fine-tuning of λ, the parameters

(Uii, ρi0,mi) have to be chosen so that the speed of sound simplifies to

c2
0 = Ũ11ρ10

m1
= Ũ22ρ20

m2
= m2ρ10U11 + m1ρ20U22 + U12(ρ10m1 + ρ20m2)

2m1m2
. (36)

While one eigenfrequency always remains zero, ω0,I ≡ 0, for the second phonon mode we get

ω2
0,II = 4U12(ρ10m2 + ρ20m1)c

2
0

h̄2 . (37)

The mass of the modes is then defined as m2
I/II = h̄2ω2

0,I/II

/
c4

0 and thus the AM corresponds
to one massless particle mI = 0 and one massive particle

m2
II = 8U12(ρ10m1 + ρ20m2)m1m2

[m2ρ10U11 + m1ρ20U22 + U12(ρ10m1 + ρ20m2)]
≈ m28U12

[U11 + 2U12 + U22]
, (38)

propagating in the acoustic Minkowski spacetime in the hydrodynamic limit. For higher wave
numbers, we obtain LIV in the form of equation (2), and the coefficients η2 and η4 for the two
modes are

η2,I/II = h̄2

4c4
0

ρ10m1 + ρ20m2

ρ10m2 + ρ20m1

ω2
0,I/II

m1m2
≈

(
mI/II

Meff

)2

=
(

massquasi-particles

Planck scaleeffective

)2

, (39)

η4,I/II = 1

4

[
γI/IIm1ρ10 + γ −1

I/IIm2ρ20

m1ρ20 + m2ρ10

]
, (40)

where γI = 1 and γII = m1/m2 are dimensionless coefficients.
From the expression it is clear that the quadratic coefficients (39) are non-universal.

While one is always zero, η2,I ≡ 0, the second η2,II depends on the interaction constant
U12. For U12 � (U11 + U22), which is equivalent to mII � √

m1m2, η2,II is suppressed.
However, there is no further suppression—after having pulled out a factor (h̄/Meff)

2—for
the quartic coefficients η4,I/II. These coefficients are of order 1 and non-universal, (though
they can be forced to be universal, for example if γI = γII and the underlying bosons have
equal masses m1 = m2); neither need the η4 coefficient be ‘fine-tuned’ to any specific value.
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The suppression of η2, combined with the non-suppression and lack of fine-tuning of η4, is
precisely the statement that the ‘naturalness problem’ does not arise. So we conclude that in
this model the higher order Lorentz violating terms naturally dominate the lowest order ones
for any k � µ.

6. Summary and discussion

We have presented an AM that can be used as a model and motivation for conjectures in QGP.
Low-energy perturbations in a two-component BEC with laser-induced transitions between
the single-particle states reproduce both massive and massless quasi-particles in an emergent
spacetime. While in the hydrodynamic regime the dispersion relation is LI, beyond it the
dispersion relation has to be modified in a Lorentz violating way. We calculated the quadratic
and quartic dimensionless coefficients η2,I/II and η4,I/II and showed that the present model
does not suffer from the naturalness problem, because the quadratic corrections are Planck
suppressed, while at the same time the quartic coefficients η4.I/II have no further suppression,
are not subject to fine-tuning, and are actually of order unity. Finally, one might wonder if an
EFT interpretation can be provided. This is indeed the case as it can be shown [12] that the
EFT of the low-energy phonons is characterized by an accidental (softly broken) symmetry.
A non-zero λ coupling is simultaneously responsible for the symmetry breaking—via the
induction of the mass term mII—and the emergence of the quadratic correction; the ‘softness’
of the former then enforces the smallness of the latter. In conclusion the lesson one can draw
for EFT with higher order Lorentz violations is that accidental, emergent symmetries could
be another viable mechanism to avoid the naturalness problem.
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